Application Note

A=
LA Afi@%
SHOSS

S
¥

S
11 N

P2 032 ARG AT
> S WM NG

J &
\ N
t—if

NAY]
VYN
RS/
(¢

2500 Series®

Programmable Automation Control System

Using a CTIl 2500P-ACP1 Application Co-
Processor module for RS232 serial data
acquisition from an Ohaus IP Series High-
Capacity Precision Top-loader bench scale

Scope:

This application is an update to a previous Tech Note on using the CTlI 2572-TCM2 Serial Interface Adapter for this ap-
plication. The 2500P-ACP1 is a more powerful and flexible platform which makes this application simpler to develop,

test and deploy. NOTE: This application can be run on a 2500P-JACP Application Co-Processor module as well, with a
change in the configuration of the PLC interface.

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

2500P-ACP1 Description:

The 2500P-ACP1 module is a general-purpose auxiliary controller that enhances the capabilities of all CTI

2500 Series® and SIMATIC® 505 PLC systems. This Advanced Function Module includes high-speed

processing and multi-protocol communications support to provide existing systems with a significant increase
in performance, features, and functionality. The 2500P-ACP1 runs as a PLC coprocessor performing complex
logic/math functions, data logging, and communications with external devices. Although the 2500P-ACP1 can
operate as a standalone controller, the application generally requires data transfer between a host PLC and the
module.

Two different data transfer options are provided:

PLC 1/0 (2500P-ACP1 only):

The 2500P-ACP1 emulates a standard I/0O module configured as 32WX / 32WY and/or 32X / 32Y image register
data points. This allows the module to work with SIMATIC® 545/555 CPUs in limited applications where a
maximum of 32 words of data is transferred to/from the CPU each PLC scan.

***(This is the transfer mode chosen for this application)

Data Cache (2500P-ACP1 and 2500P-JACP):

Proprietary link offering enhanced data throughput to CTI 2500 Series® controllers via a dedicated
Ethernet connection. Supports up to 4096 variables mapped to any PLC memory type (including Loop/
Alarm variables). The 2500P-ACP1 includes two external 10/100Mb Ethernet ports with automatic
detection of network speed, duplex mode, and cable wiring.

Block Transfer (2500P-JACP only):

The Block Transfer driver provides a method to transfer large blocks of data between a Janus Application
Coprocessor (JACP) module and a SIMATIC® 545/555 PLC or CTI 2500 Series PLC via the I/0 backplane. This
driver provides significantly greater communications capabilities compared to “PLC I/O” above. This driver
supports up to 4096 variables mapped to any PLC memory type (including Loop/Alarm variables).

Serial Port:

A serial port (male DB-9) provides an electrical interface for RS-232-C (subset) and RS-422-A connections.
All port parameters are set by software configuration. Sending and receiving of messages is controlled by
program logic.

NOTE:

In the Appendix at the end of this Tech Note you will find additional details on the ACP1, as well as descriptions of all of
the software instructions used and other pertinent information.

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

ACP1 solution scope:

The following describes the means by which the 2500P-ACP1 will read the weight value from the scale.

SEND data by simulating the scale output:

This application uses an ACP1 to simulate the known ASCII data stream from the Ohaus scale.
This ACP1 module performing the SEND operation will be referred to as ACP1

This WorkBench application is ‘ACP1_Serial 2°.

The ACP1 module is installed in a base with a CTl 2500-C400 PLC

RECEIVE data:

A 2nd ACP1 module receives and decodes the ASCII data stream to read the weight value from the scale and write it to
a PLC memory location.

This ACP1 performing the RECEIVE operation will be referred to as ACP2
This WorkBench application is ‘ACP2_Serial’

The ACP2 module is installed in a base with a Simatic 555-1106 PLC
This program uses ‘ACP1 I/O Interface’ to send the following to the PLC:

Value of ‘Decode_done’ bit sent to PLC X2001; this bit is an error indication.
In the PLC RLL this input is used to stroke a counter to track decoding errors.
This bit could also be used to signal an HMI to a communications problem.

Value of ‘Scale_wt_intX10’ word sent to PLC WX2065.
In the PLC SFPGM1 the value in WX2065 is multiplied times 10 and put into V1000. (Real).
This is the actual scale weight as a floating point number.

Communications wiring:

The field wiring part of this ACP1 module communication is achieved by plugging a standard Null Modem cable into the
DB9 serial port on each module.

Ohaus scale configuration:

- Continuous print mode
- 9600 baud
- No parity.

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

Sending / Encoding and Receiving / Decoding the ASCII data stream

Using an ACP1 to simulate the serial data from the bench scale:

Number value to be transmitted = -481.2

Sent ASCII string from ACP1:
“$L__ 4812 g SR$L'

'“SL__ 481.2_g SRSL'

Where:
1* character = this field represents the polarity of the number value transmitted.
This field is a Minus Sign ‘- indicating a negative number.

’

If this field were a positive number this 1% character would have been an Underscore *_,

that ASCII string would thenbe'_SL__ 481.2 g SRSL'

2" character = ‘SL’ this is a ‘Line Feed’.

3rd, 4™, and 5" characters = *_’ which are Underscores.

6" 7™ 8™ 9™ and 10" characters = ‘481.2’ is the actual number value transmitted in the format ‘xxx.x’.
11" and 12" characters = ‘_g’ which are an Underscore and ‘g’ (for grams).

13" — 17" characters = ‘ " are Underscores.

18" character = ‘SR’ = this is a Carriage Return.

19™ character = ‘SL’ = this is a Line Feed.
Using an ACP1 to receive and decode the serial data from the bench scale:

Received ASCII string at ACP2:

1

'-$L___481.2 g $SRSL'

'SL_ 481.2 g SRSL'

Decoded number value:

rev_real -481.2

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

ACP1 =SEND

This 1st ACP is being used to send data out the serial port to be received by the 2nd ACP. The screen captures below
show the programming requirements to configure the serial port and to send the data out the serial port. The data

sent matches the format explained on Page 4. For testing, the only part that you should modify is the actual scale
weight embedded in this message.

Configure Port:

Note: these communications parameters match the specifications for the Ohaus bench scale.

1 (* MyPort is an instance of 'SerIO' function block *)
(* SerIO manages communication through the serial port using user-defined strings *)

MyPort (true, needtosend , 'PT=1 BD=9¢ DB=7 SB=1 PY=N FC=N IF=RS232',sendstring '-$L 481.2 g SRSLYY) ;
needtosend := false; (* turn off the sending if it was on from previous scan *)

Send Data:

Note: this data send operation is unsolicited and is cyclic based on the timer function.

(* Send Data *)

1

14 else

15 if TRUE MyPort.Open TRUE and MyPort.rcv = FALSE then

1€ SendTMR(in := bSend Start TRUE , pt:= T#ls); (* configure timer *)
17 bSend_Start TRUE := true; (* re-start the timer *)

1 if (SendTMR.Q) then

19 bSend_Start TRUE := false; (* this must go low to reset TON() for next use *
2(needtosend 1= true;

21 (*sendstring := any to string(senddata);*)

22 end_if;

23 end_if;

24 end if;

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

ACP2 = RECEIVE

This 2nd ACP is being used to receive data coming into the serial port from the 1st ACP. The screen captures below
show the programming requirements to configure the serial port and to receive the data from the serial port. The data
received matches the format explained on Page 4. In the following pages this data will be decoded to extract the scale
weight itself.

Configure Port:

Note: these communications parameters match the specifications for the Ohaus bench scale.

1 (* MyPort is an instance of 'SerIO' function block *)
(* SerIO manages communication through the serial port using user-defined strings *)

MyPort (true, needtosend , 'PT=1 BD=9¢ DB=7 SB=1 PY=N FC=N IF=RS232',sendstring) ;
5 needtosend := false; (* turn off the sending if it was on from previous scan *)

Receive Data:

Note: this ASCIl data is tested to determine if the string length is correct.

1 (* Receive Data *)

19 if MyPort.Open TRUE and MyPort.rcv then
. rcvstring '' += MyPort.DataRcv B
21 rcv_other '' := rcvstring v

(* determine received string length *)
rcv_string_length 19 := MLEN (rcvstring ''); (* get string length - should be 19 characters *)

if TRUE rcv_string length 19 = 19 then (* check for correct string length, then decode *)

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

Number value received = -481.2

ACP2 = RECEIVE

This 2nd ACP is being used to receive data coming into the serial port from the 1st ACP. This screen captures below
show the programming requirements to configure the serial port and to received the data from the serial port. The
data received matches the format explained on Page 4. In the following pages this data will be decoded to extract the

scale weight itself.

Analyze and decode the ASCII string if it is a negative number

Note: this data packet has two leading characters and two trailing characters all of which aid in
determining that this packet is complete and also the polarity of the number value.

28 (* Decode string pattern for a NEGATIVE value *)
29 if (ASCII(rcv_other 'Y , 1)) = 45 & (* check if 1st character is '-' ASCII 45 *)
3((ASCII(rcv_other " , 2)) =10 & (* check if 2nd character is 'LF' ASCII 10 *)
31 (ASCII(rcv_other BN, 18)) = 13 & (* check if 18th character is 'CR' ASCII 13 *)
32 (ASCII(rcv_other '* , 19)) = 10 then (* check if 19th character is 'LF' ASCII 10 *)
34 lead_char_NEG TRUE := true; (* set NEG data good flag *)
35 (*extract 5 characters starting at 6th position%*)
36 rcv_char '481.2' = (MID(rcv_other B, 5,6));
37 rcv_number 481.2 = Any to_Real (rcv_char '481.2'); (* convert to a number *)
3 rcv_real -481.2 := -(rcv_number 481.2); (* negate the number *)
// rcvstring := ''; (* Clear input buffer *)
4 rcvstring Ay = DELETE (rcvstring S, 19, 1);
41 rcv_other okt = DELETE (rcv_other B, 19, 1);
42 else
43 lead_char NEG TRUE := false; (* reset NEG data good flag *)
44 rcv_error NEG ' SL_ 678.9 g SRSL' := rcvstring S
45 rcv_length ERR_NEG 19 := rcv_string_length 19 ;
4¢ end if;

Analyze and decode the ASCII string if it is a positive number

Note: this data packet has two leading characters and two trailing characters all of which aid in
determining that this packet is complete and also the polarity of the number value.

(* Decode string pattern for a POSITIVE value *)

49 if (ASCII(rcv_other g, 1)) = 95 & (* check if 1st character is '_' ASCII 95 *)

5((ASCII (rcv_other '" , 2)) =10 & (* check if 2nd character is 'LF' ASCII 10 *

51 (ASCII(rcv_other E, 18)) = 13 & (* check if 18th character is 'CR' ASCII 13 *)
52 (ASCII(rcv_other e, 19)) = then (* check if 19th character is 'LF' ASCII 10 *)
54 lead_char_POS := true; (* set POS data good flag *)

55 (*extract 5 characters starting at 6th position*)

56 rcv_char '481.2' := (MID(rcv_other e, 5, 6));

57 rcv_number 481.2 := Any to_Real (rcv_char '481.2'); (* convert to a number *)
58 rcv_real -481.2 := rcv_number 481.2 ; (* number is positive *)

59 // rcvstring := ''; (* Clear input buffer *)

6l rcvstring '' := DELETE (rcvstring BN, 19, 1)

61 rcv_other '' := DELETE (rcv_other ., 19, 1);

62 else

63 lead_char_POS = false; (* reset POS data good flag *)

64 rcv_error_POS '' := rcvstring SUNH

65 rcv_length_ERR_POS 19 := rcv_string_length 1) H

66 end_if;

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

Determine if there are errors in the ASCII string

68 -(* check for valid character string based on leading character *)

69 [if (lead_char NEG TRUE = 0) AND (lead_char_POS = (0) then
70 Data_Error := true; (* set flag to signal error *)

71 rcv real -481.2 := 0; (* zero out invalid data *)

72 else

73 Data Error := false; (* reset error flag *)

74 end if;

Send scale weight value to PLC memory

75 (* send scale weight data to PLC *)
76 Scale_wt_real -4812 := rcv_real -481.2 * 10;
77 Scale_wt_Intx1l0 -4812 := any to_int(Scale_wt_real -4812);

Indicate if string length is over running

-

94 (* check if received string length is invalid *)
95 if] rcv_string_length 19 > 254 then
96 Decode_done := true; (* flag to clear input buffer *)

97 end if;

Ao

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

Data received at PLC

In this Ladder Logic screen shot you can see where a Special Function Program is being called which is where the
weight value is being handled.

Next you can see that X2001 is being used to count (or track) any decoding errors of the ASCII message.

[505 WorkShap - [LAD - BASIC TO JACP_ACP1 (Online)] - o

x
BP File Edit View Program Diagnostics PLC Utilities Options Window Help =%
| glo|=|a|s] «|w|a| ald) Bkl || |- ||| | ke
| _Rely | T/CDum | Compae | BiOps | Mologc | Move | Contol | Special |
| B B¢ ¥]2| Al@=| B
[SFPGH 1 CONVERTS DATA FROM ACPl / JACP - CONVERSION IS FROM INTEGER X 10 TO REAL ~
SFPQ——————— 1
ALWAYS ON SFPGM DONE
CL C2
— € >—
IN-LINE:
LAD Address 14
JACP2 DECODE_DOME ,/ COMMS ERROR COUNTER
ACP2 [UF COUNTER——
DECODE_DONE ACP2 CIR 1
COMMS ERROR COMMS ERROR DONE BIT
X2001 COUNTER (=]
— — 1 e 1 —
PRESET: 32767
CTR. 00000
CIR 1 STATUS: UNPROT
RESET BIT
c3
-
v
< >
For Help, press F1 RSl Security: Disabled [Path: TI555_25728 [Mode: Online - Run NUM [OVR

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

Data received at PLC

In the Special Function Program you can see where the ‘Integer x 10’ value from the ACP is being converted into a Real
number.

505 WorkShop - [SFP1 (Scale_wt) - BASIC TO JACP_ACP1 (Online) Enabled]
ﬂ File Edit View Program Diagnostics PLC Utilities Options Window Help

| #o[z|a|s| :[n|a| a|d| B ikl @8] e G| =[] | k]

| BCBI | BIBC | CALL | CDT |ELSE| EMIF | E2T | AIN |FOUT|GOTO} IF IIF | IMAT | LBL | LLAG | MATH | PACK PEKAl
PCKL |PCKR| PRT | PWD | RTSF|SCAL | SDT | 55R |UNSC| FOR | NEXT | WHILE JERWH|SWITC | CASE |DEFLT| BRE JENSW

| &) B ¥9] @l]

EFFL

poool - WX20€5 IS WRITIEN TO EROM ACP2
THIS IS THE SCALE WEIGHT FROM ACPL
FORMAT IS "INTEGER X 1o~

pooo2 -
o003 » CONVERT FROM "INTEGER X 10" TO "REAL"
0004 HATH V1000, := WX20€5 / 10

Nifinin s &

In this Data Window you can see the values of the Scale Weight -
WX2065 shows up as -4812’ which is in the format of ‘Integer x 10’
V1000. shows up as -481.2" which is in the format of ‘Real’ or ‘Floating Point’
X2001 which is the Boolean ‘Decode_done’ error bit
TCC1 which is the Counter tracking decode errors in ACP2

505 WorkShop - [ACP - BASIC TO JACP_ACP1 (Online)]
B File Edit View Data Diagnostics PLC Utilities Options Window Help

| $|0|w|a[s]| x| a] o] 5|k @ |H| |60][] | e
|] B3| Y| ¥]2] R|@[H| B

Row | Addess | Tag | Description Value Time Stamp Status
1 Wi2065 ACP2 SCALE 'WT. INT %10 -4812 516 |08:28:59.996 AM 09/05/23 Success
2
3 V1000, ACP2 SCALE 'WT. REAL (1) -481.2 F32 |08:28:59.996 AM 09,/05/23 Success
4
5 x20Mm ACPZ DECODE_DONE COMMS ERROR OFF D1 (08:28:53.996 AM (89,/05/23 Success
6
7 TCCH ACPZ2 COMMS ERROR COUNTER 0516 |08:28:59.996 AM (9/05/23 Success
8
3 o CTR 1RESET BIT OFF D1 |08:2853.996 AM 08/05/23 [Success
10
1

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

Appendix

The ACP 1/0 interface is how the module reads & writes PLC memory.
In this example the I/0O interface will be configured for 32 discrete points in, 32 discrete points out, 32 words in, & 32
words out.

2500P-ACP1 1/0 Definition
The ACP1 I/0O definition is specified by selecting one the following 1/O configurations in the CT/ 2500P-ACP1 I/0

Configuration Wizard provided in CTI Workbench:
e Discrete I/0: 32 inputs / 32 outputs (32X/32Y)
e Word I/0: 32 inputs / 32 outputs (32WX/32WY)
¢ Mixed I/0: 32 discrete inputs/outputs and 32 word inputs/outputs (32X/32Y/32WX/32WY)

Edit 1/0 Base (X]

Channel: 1 Search Base...

Base: 0 Enabled
Next Base

1/0 Module Definition

Slat I/DAddr X Y WX WY SF

1 1 16 0 0 0 No

2 17 0 16 0 0 No Clear Base

3 0 0 0 0 0 No

y
S R R T
6 0 0 0 0 0 No

7 0 0 0 0 0 No

80 0 0 0 0 Mo &l
9] 0 0 0 0 No

10 0 0 0 0 0 No Expand Definition...
1] 0 0 0 0 No

12 0 0 0 0 0 No

13 0 0 0 0 0 Na Read /0 Base
14 0 0 0 0 0 No

15 0 0 0 0 1] No

16 0 0 0 0 0 No

The Mixed 1/0 interface requires special care when assigning an I/0 Address because the Series 505® model
allows one “login” address for each module slot. Therefore, the I/O Address assigns the image register
positions for both the Discrete 1/0 and Word 1/0 values.

In the example, a value of “2001” is designated as the /O Address. This equates to the following I/0 mapping
for ACP1 data within the PLC:

¢ 32 discrete inputs mapped to X2001-X2032

¢ 32 discrete outputs mapped to Y2033-Y2064

¢ 32 word inputs mapped to WX2065-WX2096

¢ 32 word outputs mapped to WY2097-WY2124

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

2500P-ACP1 1/0 Configuration

From within WorkBench you open this configuration wizard and define:
Module Log-in Configuration—in this case it is 32X / 32Y / 32WX / 32WY
Module Log-In Address—this is the beginning I/O address of this configuration
Lastly, you populate the rows in each I/O column with the WorkBench symbol that you want to
connect to PLC memory
In this example -
Boolean symbol ‘Decode_done’ has been assigned to X2001
Integer symbol ‘Scale_wt_Intx10’has been assigned to WX2065

CTl 2500P-ACP11/0 Configuration X

m Module Log-in Configuration Discrete/Analog /O (32X/32Y/32WX/32WY) v

Module Log-in Address | 2001 2 | set

BOOL TO PLC (X) BOOL FROM PLC (Y) INT TO PLC (WX) INT FROM PLC (WY) A

0 Decode_done Scale_wt_intx10

1
2
3
-
5
i
7
[
9
10
1
12
13
14
15
16
17
18
19
20
21
2
2
24

25 v

[] Conce

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

ACP1 Technical Overview

2.1 Status Indicator LEDs
At the top of the module front panel are three status LEDs. The function of the LEDs is described in the

following table. Q
LED State Indication _
Off Module not operational C
Flashing | Module not ready — Operator action required
STATUS (Module error, Watchdog timeout, Application program
not found, or Host interface failure) @ v
On Module operation is normal
Off Application program stopped @ o
ACTIVE | Flashing Program loaded but logic i? nc.t running (PAUSED 51.:ate}. N
I/0 interface and communication protocols are active.
On Application program is executing (RUN state)
Off
USER Flashing Controlled by application logic
on

2.2 LED Multi-Segment Display

The Multi-Segment Display (MSD) is located below the status LEDs. The MSD is used to
display status and error codes. During normal operation the MSD displays the TCP/IP
address of the product, one octet at a time. When an error is encountered, the MSD will
also display an Error Code. See APPENDIX A: ERROR CODES for a list of error codes and .
descriptions.

ESET
2.3 Reset Button .
The Reset Button allows you to initiate a “soft reset” for the 2500P-ACP1 module. This
reset is equivalent to cycling power to the module. When the button is depressed (using n
a pointed object such as a ball point pen, the module is restarted after an orderly

shutdown of the application program. This reset action can be disabled by sefting
madule switch (SW3) to CLOSED position. Section 3.1.2 contains information on location and setting for
module switches.

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

2.4 Ethernet Status Indicators

The Ethernet LEDs indicate the state of the TCP/IP interface and whether the module is transmitting and

receiving data via the Ethernet as shown in the following table.

LED State Indication
NS oOff TCP/IP is not operational.
(Network Status) On-Red TCP/IP is operational. A device with the same IP address
as this 2500P-ACP1 module has been detected.
On-Green | TCP/IP is connected and operational.
XMT (Transmit) Flashing Ethernet port is transmitting data
RCV (Receive) Flashing Ethernet port is receiving data.

2.5 Ethernet Ports

The 2500P-ACP1 provides two Ethernet ports capable of operating at 10/100Mb, half or full
duplex. The speed and duplex mode are automatically negotiated with the device connected to
the port. Each port supports auto-crossover capability, allowing the port to be connected to an
external Ethernet switch or directly to a device, such as a laptop or 2500 Series® controller. Both
ports are functionally equivalent.

The 2500P-ACP1 incorporates an Ethernet switch which is connected to both Ethernet ports and
the microprocessor. The switch allows either port to communicate with the microprocessor. The
two ports can be connected or isolated from each other (see ‘Port Isolation’ below). Besides
providing this connectivity, the switch also provides hardware protection against network
broadcast/multicast storms.

It is also possible to enable ‘IP aliasing” by configuring an Alias IP Address and Alias Subnet
Mask. This allows two IP addresses to be associated with the ACP1 module so that each Ethernet
port can be connected to a separate sub-network. When ‘IP aliasing’ is enabled, either Ethernet
port can be used with either sub-network (i.e. the IP Address and Subnet Mask is not port
specific). When using this feature, Port Isolation should always be enabled.

Port Isolation can be enabled by setting module switch (SW4) to CLOSED position. This setting
blocks forwarding of all Ethernet packets between the two ports and allows the ACP1 to be used
with redundant network topologies without creating network loops. Section 3.1.2 contains
information on location and setting for module switches.

e

T

=
u-

P\m-—-—-

7

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

Each Ethernet port connector contains two embedded LEDs. The Link LED indicates whether the Ethernet port
is successfully connected to another Ethernet device, such as a network switch. The Activiry (ACT) LED
provides visual indication that Ethernet packets are being received or transmitted via the port. See the
following table below for more information.

LED State Indication
Link Off Ethernet link is not available.
On Ethernet link is available.
Act oft Mo Ethernet frames are being transmitted on the
(Activity) network to which the port is connected.
Flashing Ethernet frames are being transmitted on the network
to which the port is connected

2.7 Serial Port

The male DBS connector on the front panel provides the serial port interface. Modbus-RTU (Master or Slave)
and General ASCIl Send/Receive data protocols are supported for the serial port and managed by the
application program. All port parameters, including the selected electrical interface (R5-232 or RS-422), are set
by software configuration via CTI Workbench. The cable used with the external device must connect to the
pins used by the selected electrical interface.

RS-232 (Subset) Pinout:

' 2 RXD Receive Data
/,.,-"‘"“ 3 TXD Transmit Data
5 GND Signal Ground
-RX 6 "’:‘;ﬁ 148X 7 RTS Request to Send [optional)
RTS 7 >] 2 RXD 8 CTS Clear to Send (optional)
075 8 of o
¢ 4 41X]
X9 L] . 5 GAD RS-422 Pinout:
\:‘:»__:_‘_w
Pin Signal Description
1 +RX Receive Data [4)
o 4 +TX Transmit Data (+)
6 RX Receive Data (-)
9 -TX Transmit Data (-
NOTE:

A serial port connection to CTI Workbench is not supported by the ACP1 module.
This interface must be made using TCP/IP connection.

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

Null Modem cable pinout:

- iO Ground os =
20,5 RX O9
O Oa
70 ; omIx X 0303
80 O7

AO RX 020
90 . & 3

Serial Port Communications

CTl products such as the 2500P-ACP1 and 2500P-JACP provide a serial port which can be used to communicate with devices support electrical interfaces such as
RS-232, RS-422, and RS 485. There are two requirements for communication with the device..

1. The port parameters must be configured to match the requirements of the target device.
2. A communications protocol that is supported by the device must be used.

Configuring the Serial Port Parameters.

The serial port is configured by constructing an ASCII string containing parameter descriptors and associated values as shown in the following table.

Parameter | Descriptor Valid Values Default Value
Port 1D BT Product Dependent 1
MRate BD 1200,2400, 4800, 9600, 19200, 38400, 57600, 115200 9600
Data Bits DB 7.8 8
Stop Bits 5B 1,2 1
Parity PY MNone (M), Even (E), Odd (0) ASCIl (N)/ Modbus RTU (E)
Flow Control FC Ma (M), Yes (Y) M
"Y'enables RTS-CTS handshake (CTS must be TRUE to send)
Interface IF RS232, RS422 (ACP1 and JACP modules), RS232
RS-485 (JACP Module only)

Usage Rules

o [f any parameters are missing or assigned invalid values, the default value for the parameter(s) will be used.
o All characters in the string are case insensitive.

e The string is not order dependent.

& Any extraneous content included in the string will be ignored.

Example String
PT=1 BD=139200 DB=8 SB=1 PY=N FC=N IF=RS232

Choosing a Communications Protocol

The following communications protocol are available
e Modbus RTU Master Fieldbus configuration for *Com port:”
« Modbus RTU Slave Function Blocks: MBSLAVERTU. MBSLAVERTUEX
o General ASCIl; SERIO and SERIO_B to send and receive character string or byte array.

CTl Product Support

CTI 2500P-ACP1
CTl JACP Module

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

ACP1 Functions and Instructions used in this application

SERIO

Function Block - Manages communications through the serial port

Inputs

RUN : BOOL Enables communications

SND : BOOL TRUE Sends data

CONF : STRING Contains Senal Port Parameters
DATASND : STRING Contains the data to be sent

Qutputs

OPEN : BOOL TRUE if the communication port is open
RCV : BOOL TRUE if data has been received

ERR : BOOL TRUE if error detected during sending data
DATARCYV : STRING Contains received data

Remarks

The RUN input does not include an edge detection. The block tries to open the port on each call when RUN is TRUE (if port is not already open).
When RUN is FALSE the port will be closed (if open).

The CONF input is used for settings when opening the port. See Senal Porf Paramefers.

The SND input does not include an edge detection. Characters are sent on each call if SND is TRUE and DATASND is not empty.

The DATARCY string is erased and replaced with any received data each cycle.

Your application is responsible for storing received character immediately after each call to SERIO block.

The SERIO function block can be used in PC simulation mode.
In that case, the CONF input defines the communication port according to the syntax of the MODE command.
For example:

'COM1:9600,N,8,1'

STLanguage

MySer is a declared instance of SERIO function block.
MySer (RUN, SND, CONF, DATASND):
OPEN := MySer.OPEHN;
RCV := MySer.RCV;
ERR := MySer.ERR:
DATARCYV := MySer.DATARCV:

String Operations

Below are the standard operators and functions that manage character strings:

Code Operator / Function

i concatenation of strings

CONCAT concatenation of strings

MLEN get string length

DELETE delete characters in a string

INSERT insert characters in a string

FIND find characters in a string

REPLACE replace characters in a string

LEFT extract a part of a string on the left

RIGHT extract a part of a string on the right

MID extract a part of a string

CHAR build a single character string

ASCI get the ASCII code of a character within a string
ATOH converts string to integer using hexadecimal basis
HTOA converts integer to string using hexadecimal basis
CRC16 CRC16 calculation

ArrayToString copies elements of an SINT array to a STRING
StringToArray copies characters of a STRING to an SINT array

Other functions are available for managing string tables as resources:

Function Description
StringTable Select the active string table resource
LoadString Load a string from the active string table

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

Constant Expressions

Caonstant expressions can be used in all languages for assigning a variable with a value. All constant expressions have a well defined data type according to their semantics. If you program an operation between variables and constant expressions having inconsistent data
types. it will lead to syntax errors when the program is compiled. Below are the syntax rules for constant expressions according to possible data types:

BOOL: Boolean

There are only two possible Boolean constant expressions. They are reserved keywords TRUE and FALSE.

SINT: Small (8 bit) Integer

Small integer constant expressions are valid integer values (between -128 and 127) and must be prefixed with SINT#. All integer expressions having no prefix are considered as DINTintegers.
USINT/BYTE: Unsigned 8 bit Integer

Unsigned small integer constant expressions are valid integer values (between 0 and 255) and must be prefixed with USINT# All integer expressions having no prefix are considered as DINTintegers.
INT: 16 bit Integer

16 bit integer constant expressions are valid integer values (between -32768 and 32767) and must be prefixed with /NT#.
All integer expressions having no prefix are considered as DINT integers.

UINT/WORD: Unsigned 16 bit Integer

Unsigned 16 bit integer constant expressions are valid integer values (between 0 and 65535) and must be prefixed with UINT#.
All integer expressions having no prefix are considered as DINT integers.

DINT: 32 bit (default) Integer

32 bit integer constant expressions must be valid numbers between -2147483648 to +2147483647. DINT is the default size for integers: such constant expressions do not need any prefix. You can use 2#, 8# or 16# prefixes for specifying a number in respectively binary,
octal or hexadecimal basis.

UDINT/DWORD: Unsigned 32 bit Integer

Unsigned 32 bit integer constant expressions are valid integer values (between 0 and 4294967295) and must be prefixed with UDINT#.
All integer expressions having no prefix are considered as DINT integers.

LINT: Long (64 bit) Integer

Long integer constant expressions are valid integer values and must be prefixed with LINT#

All integer expressions having no prefix are considered as DINT integers.

REAL: Single precision Floating Point Value

Real constant expressions must be a valid number, and must include a decimal point ("."). If you need to enter a real expression having an integer value, add .0 at the end of the number.
You can use F or £ separators for specifying the exponent when entering a value using scientific notation.
REAL is the default precision for floating point numbers. Such expressions do not need any prefix.

LREAL: Double Precision Floating Peoint Value

Real constant expressions must be valid number, must include a decimal point ("."). and must be prefixed with LREAL#
If you need to enter a real expression having an integer value, add .0 at the end of the number.
You can use F or E separators for specifying the exponent when entering a value using scientific notation.

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

TIME: Time

Time constant expressions can be used to represent durations of less than 24 hours. Expressions must be prefixed by either TIME# or TH.
They are expressed as a number of hours followed by b, a number of minutes followed by m, a number of seconds followed by s, and a number of milliseconds followed by ms.
The order of units (hour, minutes, seconds, milliseconds) must be respected. You cannot insert blank characters within the time expression.
There must be at least one valid time unit letter in the expression. See examples below:
& Declare a variable cycletime with data type TIME. Following examples are valid:

cycletime := t#12s; //Sets cycletime to 12 seconds
cycletime :=time#lml100ms; //5ets cycletime to 1 minute plus 100 milliseconds
cycletime := t#1hl10m5s50ms; //Sets cycletime to 1 hour, 10 minutes, 5 seconds, and 50 milliseconds.

STRING: Character String

String expressions must be written between single quote marks. The length of the string cannot exceed 255 characters.
ou can use the following sequences to represent a special or not printable character within a string:

Sequence Description
35 "§" character
¥ Single quote
5T Tab stop (ASCIl code 9)
3R Carriage return character (ASCI code 13)
5L Line feed character (ASCIl code 10)
3N Carriage return plus line feed characters (ASCIl codes 13 and 10)
P Page break character (ASCIl code 12)
Brox Any character (xx is the ASCIl code expressed as two hexadecimal digits)
2 Example
Below are some examples of valid constant expressions:

Expression Description

TRUE TRUE boolean expression

FALSE FALSE boolean expression

SINT#127 Short integer

INT#2000 Signed 16-bit integer

123456 DINT (32 bit) integer

16#abcd DINT integer in hexadecimal basis

LINT#1 Laong (64 bit) integer having the value "1"

0.0 0 expressed as a REALnumber

1.002E3 1002 expressed as a REALnumber in scientific notation

LREAL#1E-200 Double precision real number

T#23h59m595999ms Maximum TIMEvalue

TIME#0s MNull TIMEvalue

T#1h123ms TIMEvalue with some units missing

‘helle® Character string

‘name$Tage’ Character string with two words separated by a tab

15'm here’ Character string with a quote inside ('m here)

%500y Character string with two characters separated by a null character (ASCIl code 0)

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

Sequence Description

b "$" character
B Single quote
T Tab stop (ASCIl code 9)
3R Carriage return character (ASCIl code 13)
BL Line feed character (ASCIl code 10)
B Carriage return plus line feed characters (ASCIl codes 13 and 10}
P Page break character (ASCIl code 12)
Poox Any character (xx is the ASCIl code expressed as two hexadecimal digits)
2 Example
Below are some examples of valid constant expressions:

Expression Description

TRUE TRUE boolean expression

FALSE FALSE boolean expression

SINT#127 Short integer

INT#2000 Signed 16-bit integer

123456 DINT (32 bit) integer

16#abcd DINT integer in hexadecimal basis

LINT#1 Long (64 bit) integer having the value "1"

0.0 0 expressed as a REALnumber

1.002E3 1002 expressed as a REALnumber in scientific notation

LREAL#1E-200 Double precision real number

T#23h59m595999ms Maximum TIMEvalue

TIME#0s MNull TIMEvalue

T#1h123ms TIMEvalue with some units missing

‘hello’ Character string

‘name$Tage’ Character string with two words separated by a tab

15'm here’ Character string with a quote inside {(I'm here)

%300y Character string with two characters separated by a null character (ASCIl code 0)

Below are some examples of typical errors in constant expressions:

Expression Error-Description

BoolVar = 1; 0 and 1 cannot be used for Booleans - must use TRUE or FALSE
1a2b Base prefix ("16#") omitted

1E-200 "LREAL#" prefix omitted for a double precision float

T#12 Time unit missing

Tm here’ Quote within a string with "$" mark omitted

hello Quotes omitted around a character string

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.

IF THEN ELSE ELSIF END_IF

Statement - Conditional execution of statements

Syntax

IF <BOOL expression> THEN
<statements>

ELSIF <BCOOL expression> THEN
<statements>

ELSE
<statements>

END_IF;

Remarks

The IF statement is available in ST only.

The execution of the statements is conditioned by a Boolean expression.
ELSIF and ELSE statements are optional.

Multiple ELSIF statements can be used when desired.

S$TLanguage

(* simple condition *)
IF bCond THEN

Q1 := IN1:
Q2 := TRUE;
END_IF:

(¥ binary selection *¥*)
IF bCond THEN

(* enumerated conditions *)
IF bCondl THEN

@1 = IN1:
ELSIF bCond2 THEN
Q1 := INZ;
ELSIF bCond3 THEN
Q1 := IN3:

ELSE
Q1 = IN4:
END_IF;

CONCAT

Function - Concatenate strings

Inputs

IN_1: STRING Any string variable or constant expression
IN_N : STRING Any string variable or constant expression

Outputs
Q: STRING Concatenation of all inputs

Remarks

In FBD or LD language, the block may have up to 16 inputs.

In LD language.the input (EM) enables the operation, and the output (ENO) keeps the same value as the input.
In IL or ST, the function accepts a variable number of inputs (at least 2).

MNote that you also can use the "+" operator to concatenate strings.

ST Language
Q := CONCAT ('RR', 'CD', 'E'}):
(* now Q is 'ABCDE' *)

FBD Language

Concat

IN1— -
IN2—

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

MLEN

Function - Get the number of characters in a string

Inputs
IN : STRING Character string

Outputs
NBC : DINT Number of characters currently in the string (0 if string is empty)

Remarks

In LD language, the input (EM) enables the operation, and the output (ENO) keeps the same value as the input.
In IL, the first input (IN: STRING) must be loaded on the stack before calling the function.

STLanguage
NEBC := MLEN (IN):

ASCII

Function - Get the ASCIl code of a character within a string

Inputs

IN : STRING Input string

POS : DINT Position of the character within the string
(the first valid position is 1).

Outputs

CODE : DINT ASCIl code of the selected character.
(or 0if position is invalid)

Remarks

In LD language, the input (EN) enables the operation, and the output (ENO) keeps the same value as the input.

In IL language, the first parameter (IN) must be loaded on the stack before calling the function. The other input is the operand of
the function.

STLanguage
CODE := ASCII (IN, PCS):

MID

Function - Extract characters of a string starting at any position within the string

Inputs

IN : STRING Character string

NBC : DINT Number of characters to extract

PQOS : DINT Position of the first character to extract (first character of IN is at position 1).
Qutputs

Q: STRING String containing the first NBC characters of IN.

Remarks

The first valid position in the string is 1.

The number of characters extracted is limited to smallest value of: IN string length, Q string length, or (POS + NDEL-1).

In LD language, the input (EN) enables the operation, and the output (ENO) keeps the same value as the input.

In IL, the first input (IN: STRING) must be loaded on the stack before calling the function. Other argument are operands of the function, separated by commas.

ST Language
Q := MID (IN, NBC, POS):

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

ANY_TO_REAL

Operator - Converts the input into a single-precision Real value

Inputs
IN : ANY Input value

Outputs
Q : REAL Value converted to 32-bit Real number

Remarks

For BOOL input data types, the output is 0.0 or 1.0

For any INTEGER input data type, the output is a REAL number with the same value.

For TIME input data types, the result is the number of milliseconds.

For STRING inputs, the output is the number represented by the string, or 0.0 if the string does not represent a valid number.
In LD language, the operation executes only if the input (EN) is TRUE. The output (ENO) keeps the same value as the input.
InIL Language, the ANY TO REAL function converts the value pushed on the stack.

ST Language
@ := BNY TO REAL (IN);

NEG -

Operator - Performs an integer negation of the input

Inputs
IN : DINT Integer value

Outputs
Q:DINT Integer negation of the input

Truth table (examples)

IN Q
0 0

1 -1
-123 123
Remarks

In FBD and LD language, the block MEG can be used.

In LD language, the operation executes only if the input (EN) is TRUE. The output (ENQ) keeps the same value as the input.
This feature is not available in IL language.

In ST language, "-" can be followed by a complex Boolean expression between parenthesis.

8T Language
Q := -IN;
Q := - (IN1 + INZ2):

DELETE

Function - Delete characters in a string

Inputs

IN : STRING Character string

NBC : DINT Mumber of characters to be deleted

POS : DINT Position of the first deleted character (first character position is 1)
Outputs

Q: STRING Modified string.

Remarks

The first valid character position is 1.
In LD language, the input (EN) enables the operation, and the output (ENO) keeps the same value as the input.
In IL, the first input (IN: STRING) must be loaded on the stack before calling the function. Other arguments are operands of the function, separated by commas.

ST Language
@ := DELETE (IN, NBC, POS):

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

ASCII conversion chart

Decimal - Binary - Octal - Hex — ASCI|
Conversion Chart

Decimal Binary Octal Hex ASCIl Decimal Binary Octal Hex ASCIl Decimal Binary Octal Hex ASCI Decimal Binary Octal Hex ASCII
0 00000000 000 00 NUL 32 00100000 040 20 SP 64 01000000 100 40 @ 9% 01100000 140 60
1 00000001 001 01 SOH 3 00100001 041 21 I 65 01000001 101 41 A 97 01100001 141 61 a
2 00000010 002 02 STX 34 00100010 042 22 ° 66 01000010 102 42 B 98 01100010 142 62 b
3 00000011 003 03 ETX 35 00100011 043 23 # 67 01000011 103 43 C 29 01100011 143 63 ¢
4 00000100 004 04 EOT 36 00100100 044 24 68 01000100 104 44 D 100 01100100 144 64 d
5 00000101 005 05 ENQ i 00100101 045 25 % 69 01000101 105 45 E 101 01100101 145 65 e
6 00000110 006 06 ACK 38 00100110 046 26 & 70 01000110 106 46 F 102 01100110 146 66 f
7 00000111 007 O7T BEL 39 00100111 047 27 7 01000111 107 47 G 103 01100111 147 67 g
8 00001000 010 08 BS 40 00101000 050 28 (72 01001000 110 48 H 104 01101000 150 68 h
9 00001001 011 09 HT 41 00101001 051) 73 01001001 111 49 | 105 01101001 151 69 i
10 00001010 012 O0A LF 42 00101010 052 2A * 74 01001010 112 4A J 106 01101010 152 6A
" 00001011 013 0B VT 43 00101011 053 2B + 75 01001011 113 4B K 107 01101011 153 6B k
12 00001100 014 0OC FF 44 00101100 054 2C | 76 01001100 114 4C L 108 01101100 154 6C |
13 00001101 015 0D CR 45 00101101 0% 20 - i 01001101 115 4D M 109 01101101 155 6D m
14 00001110 016 OE SO 46 00101110 056 2E . 78 01001110 116 4E N 110 01101110 156 6E n
15 00001111 017 OF Sl 47 00101111 057 2F / 79 01001111 117 4F O m onmo111 157 6F o
16 00010000 020 10 DLE 48 00110000 060 30 O 80 01010000 120 50 P 112 01110000 160 70 p
7 00010001 021 1" DCc1 49 00110001 061 3 1 81 01010001 121 51 Q 13 01110001 161 n q
18 00010010 022 12 DC2 50 00110010 062 32 2 82 01010010 122 52 R 114 01110010 162 72 r
19 00010011 023 13 DC3 51 00110011 063 33 3 83 01010011 123 S 15 01110011 163 73 s
20 00010100 024 14 DC4 52 00110100 064 34 4 84 01010100 124 54 T 116 01110100 164 74 t
21 00010101 025 15 NAK 53 00110101 065 35 5 85 01010101 125 55 U "7 01110101 165 75 u
2 00010110 026 16 SYN 54 00110110 066 36 6 86 01010110 126 A 18 01110110 166 76 v
23 00010111 027 17 ETB 55 00110111 067 37 7 87 01010111 127 57 W 119 01110111 167 77 w
24 00011000 030 18 CAN 56 00111000 070 38 8 88 01011000 130 58 X 120 01111000 170 78 x
25 00011001 031 19 EM 57 00111001 071 39 9 89 01011001 131 59 Y 121 01111001 171 9 vy
26 00011010 032 1A SUB 58 00111010 072 3A 90 01011010 132 5A 2 122 011010 1712 7A z
00011011 033 1B ESC 59 00111011 073 3B ; 91 01011011 133 58 [123 0111011 173 7B {
28 00011100 034 1C FS 60 00111100 074 3C < 92 01011100 134 5C \ 124 01111100 174 7C |
29 00011101 035 1D GS 61 00111101 075 3D = 93 01011101 135 5D] 125 01111101 175 7D}
30 00011110 036 1E RS 62 00111110 076 3E > 94 01011110 136 56 A 126 oMo 176 7E ~
3 00011111 037 1F us 63 oo111111 077 3F ? 95 o1011111 137 5F 127 o 177 7F DEL
This work i licensed under the Creative Commons Annbution-ShareAlke License. To view a copy of this license, visit hip.//creativecommons ong licenses by-sa/3.0/ ASCI Comversion Chart.doc Copyright © 2008, 2012 Donald Weiman 22 March 2012

ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY

Copyright© 2023 Control Technology Inc.
o Alljights Reserved

Control Technology Inc.
5734 Middlebrook Pike, Knoxville, TN 37921-5962
Phone: +1.865.584.0440 Fax: +1.865.584.5720

www.controltechnology.com ROCK SOLID PERFORMANCE. TIMELESS COMPATIBILITY.
25

